17 research outputs found

    Assessment of Heat Stress for Outdoor Work Conditions in Saudi Arabia

    Get PDF
    Outdoor workers have an increased risk of heat stress in Saudi Arabia since it is one of the hottest places in the Middle East. Recently, the government decided to limit outdoor work hours during the months of June, July, and August every year, and banned working under the direct sunlight from 12:00 to 03:00 p.m., although outdoor workers in the petroleum, natural gas, or emergency maintenance work industries are exempt from this prohibition. Traditionally, the efforts by safety and health professionals to mitigate work-related heat injury has been directed toward the assessment of environmental heat stress (e.g., wet-bulb globe temperature), rather than toward the associated physiological strain responses (e.g., heart rate and core temperatures). However, because a worker’s physiological response to given heat stress is modified independently by individual factors of each worker (e.g., age, sex, chronic disease, others), it becomes challenging to protect workers on an individual basis from heat-related injury without assessing those physiological responses. The primary objective of this study was to examine whether limiting work hours will reduce the risk of heat stress among outdoor workers or not. That can be achieved by (1) examining if the ban on three-month midday outdoor work needs to be extended to cover the period from June 1st to September 30th (2) examining if the midday break between 12:00 pm and 03:00 pm need to be extended by a few more hours. A field study was carried out in Dammam City on Saudi Arabia’s eastern coast where the humidity reaches 95% and temperature can reach 47°C (116.6°F) during summer months. The core temperature of 20 subjects matched for age, gender, and experience subjects was monitored while they performed their normal duties in the outdoor environment of Dammam City. The core temperature of these outdoor workers was measured using a novel non-invasive measurement method. The obtained results showed that subjects were under the risk of heat stress over a large part of the workday and their body temperature exceeds the allowable core temperature (38.5°C; 101.3°F) which the ACGIH has proposed to protect workers from experiencing heat stress. The intensity of exposure was high from (10:00-12:00 a.m.) that is not included in the midday break. A control group (non-policy) which did not experience the mid-day break showed essentially the same core body temperature as the experimental (policy) group. Among chief findings was that complying with a midday break work ban (12:00–3:00 p.m.) was not effective in reducing heat stress risk under the conditions and limitations of the design. The policymakers should be informed that this particular policy is not helpful and does not significantly lower core body temperatures. Some policy modifications are suggested which might better impact core body temperatures under these extreme conditions

    Strategy Plan and Policy Model of Public Transport in Saudi Arabia

    Get PDF
    GDP of Saudi Arabia has increased from 1billionUSdollarin1972tomorethan 1 billion US dollar in 1972 to more than 300 billion US dollar in 2011. The increase in population from 10 million in 1950 to 28 million in 2010, urbanization represent about 80%. the country consume about 20-25% of it's own oil production about 2.5 million per/daily. This shows that the Saudi policy have given incentive to cars user for longtime and has done little to manage demand or support public transport. The main objective of this paper is place the Saudi model in public transport in the international context and to draw an international prospective of public transport policy and the rational of government intervention in transport sector. The study gives classification models which characterize the industries and form of intervention. Further more the study highlight some of the approaches which adopted by both developed and developing industry at specific time. The Methods and models use vary from one country and this study had classified intervention in transport sector in five models which are such as models of ownership, regulation, competition, finance system and private public partnership model. In 2011 Saudi Arabia has introduce it First National Transport Strategy, which have adopted many objectives among the most is, to improve efficiency of transport sector, module environmental impact of transport sector, improves safety facilitate the movement of peoples and goods to improve economic activity (MOT 2011). This state shows that no clear objectives to improve public transport policy

    Application of Sustainable City Logistics in Saudi Arabia

    Get PDF
    The kingdom of Saudi Arabia has advantages in trade and logistics services that other countries do not have. By 2020 there was a significant increase in logistics market revenue with reach almost SAR 94 billion (USD $ 25 billion), which, in this case, opens up opportunities for FDI (Foreign Direct Investment) that must be exploited. Components and logistics services are a series of activities planning, organizing, and controlling all activities in the flow of materials, from raw materials to final consumption and the return flow of manufactured products, with the aim of satisfying the needs and desires of customers and other interested parties. city. Therefore, the sustainability of city logistics requires synergy between policy makers (government) and also the community (public) with the private sector (private) with steps such as simplification of regulations, provision of urban infrastructure, low carbon emissions in transportation means of delivery of logistics services, network governance. modern traffic so that this public-private partnership is the key to the effectiveness and efficiency of a sustainable urban logistics chain

    Synthesis, Crystal Structure, Theoretical Calculations, Antibacterial Activity, Electrochemical Behavior, and Molecular Docking of Ni(II) and Cu(II) Complexes with Pyridoxal-Semicarbazone

    Get PDF
    New Ni (II) and Cu (II) complexes with pyridoxal-semicarbazone were synthesized and their structures were solved by X-ray crystallography. This analysis showed the bis-ligand octahedral structure of [Ni(PLSC-H)2]·H2O and the dimer octahedral structure of [Cu(PLSC)(SO4)(H2O)]2·2H2O. Hirshfeld surface analysis was employed to determine the most important intermolecular interactions in the crystallographic structures. The structures of both complexes were further examined using density functional theory and natural bond orbital analysis. The photocatalytic decomposition of methylene blue in the presence of both compounds was investigated. Both compounds were active toward E. coli and S. aureus, with a minimum inhibition concentration similar to that of chloramphenicol. The obtained complexes led to the formation of free radical species, as was demonstrated in an experiment with dichlorofluorescein-diacetate. It is postulated that this is the mechanistic pathway of the antibacterial and photocatalytic activities. Cyclic voltammograms of the compounds showed the peaks of the reduction of metal ions. A molecular docking study showed that the Ni(II) complex exhibited promising activity towards Janus kinase (JAK), as a potential therapy for inflammatory diseases, cancers, and immunologic disorders

    Perceived Risk of falls among Acute Care Patients

    Get PDF
    Purpose: In an effort to lower the number of falls that occur among hospitalized patients, several facilities have begun introducing various fall prevention programs. However, the efficacy of fall prevention programs is diminished if patients do not consider themselves to be at risk for falls and do not follow recommended procedures. The goal of this study was to characterize how patients in four different acute care specialist services felt about their risk of falling while in the hospital. Methods: One hundred patients admitted to the study hospital with a Morse Fall Scale score of 45 or higher were given the Patient Perception Questionnaire, a tool designed to assess a patient's perception of their own fall risk, fear of falling, and motivation to take part in fall prevention efforts. Scores on the Morse Fall Scale were gathered through a historical assessment of medical records. Descriptive statistics, Pearson's correlation coefficients, and independent sample t tests were used to examine the data. Results: The average age was 65, and around half (52%) were men and half (48%) were women. Based on their ratings on the Morse Fall Scale, all 100 participants were classified as being at high risk for falls. However, only 55.5% of the individuals agreed with this assessment. The likelihood that a patient would seek assistance and the degree to which they feared falling both declined as their faith in their mobility improved. Patients hospitalized after a fall exhibited considerably lower confidence scores and greater fear scores than patients who had not been injured in a fall. Conclusions: Patients who have a high fall risk assessment score may not believe they are at risk for falls and may not take any steps to reduce their risk. The prevalence of falls in hospitals might be mitigated by the creation of a fall risk assessment technique that takes into account both objective and subjective factors

    Individualized medicine enabled by genomics in Saudi Arabia

    Full text link

    Serum Microrna 362-3P as a Potential Biomarker to Predict the Extent of Drug-Induced Qt Interval Lengthening Among Heart Failure Patients

    No full text
    Background:The sensitivity to drug-induced QT prolongation is highly variable in heart failure (HF) patients. QT interval prolongation can lead to a life-threatening ventricular arrhythmia known as torsade de Pointes (TdP), which can result in sudden cardiac death. Although QT prolongation is a surrogate marker for sudden cardiac death, the extent of drug-induced QT prolongation, and thus TdP, is largely unpredictable. Therefore, developing a biomarker to predict patients’ sensitivity to drug-induced QTc prolongation could have a profound clinical impact. MicroRNA (miR) are recognized as important regulators of cardiovascular function as they shape the transcriptome by targeting mRNAs for repression of translation. Our multidisciplinary research group has demonstrated that miR-362-3p regulates a potassium channel (i.e., hERG) that is the most widely implicated in drug-induced QTc prolongation. The primary objects of this analysis focus on characterizing serum miR-362-3p expression in the circulation as a potential biomarker to predict subject’s susceptibility to ibutilide exposure induced QT-interval prolongation Methods:The dataset utilized to develop the PK-PD models were collected from a previous clinical study carried out by Tisdale et al. (Tisdale, et al. 2020). A total of 22 adult subjects who met the inclusion and exclusion criteria were enrolled and divided into three groups: a group of patients with heart failure with preserved ejection fraction (HFpEF, n=10), a group of patients with heart failure with reduced ejection fraction (HFrEF, n=2), and ten healthy subjects in the control group who were matched to subjects in the HFpEF group for age and sex. Following a baseline day of triplicate 12-lead ECGs, all subjects received ibutilide 0.003 mg/kg intravenously infused over 10 minutes. Serial collection of blood samples to determine serum Ibutilide concentrations (HPLC/MS), serum miR-362-3 expression (qPCR), with triplicate ECG readings were obtained pre-and-post ibutilide administration. To describe ibutilide serum concentration exposure and the relationship with Fridericia-corrected QT (QTF) intervals, a non-linear mixed effect modeling approach was used along with clinical and demographic data, and serum miR-362-3p expression was evaluated as potential covariates on the PK/PD model. Results:A three-compartment model best described the time course of ibutilide concentrations profile with a proportional residual error. The individual ibutilide concentrations time profile was then used in an indirect response model where ibutilide concentrations are indirectly driving the QT interval prolongation through inhibition of the output (Kout) parameters linked to an indirect response model with zero‐order input parameter best described the ibutilide concentrations QT interval lengthening relationship. The Individual PK/PD parameters using the base model for the Imax and IC50 were 11.4% (9.9% RES) and 0.36 (8.4% RES) ng/mL, respectively. Following stepwise forwarding inclusion steps, the final covariate analyses identified circulating miR-362- 3p expression associated with a history of myocardial infarction covariate influencing both the Imax and IC50 ( p\u3c0.05). Conclusions:An indirect response model has been developed to describe the effects of ibutilide concentrations on QT-intervals. Although the semi-mechanistic model could not be developed; serum miR-362-3p expression was identified as a significant predictor for ibutilide-induced QTinterval prolongation. Moreover, the upregulation of serum miR-362-3p expression enhanced IC50 seen after ibutilide administration. The potential use of miR-362-3p as a biomarker warrants further investigation to identify patients at the greatest risk of TdP

    Biosynthesis of silver nanoparticles (Ag-NPs) using Senna alexandrina grown in Saudi Arabia and their bioactivity against multidrug-resistant pathogens and cancer cells

    No full text
    There is no doubt that the risk of drug-resistant pathogens and cancer diseases is on the rise. So, the goal of this study was to find out how effective silver nanoparticles (Ag-NPs) made by Senna alexandrina are at fighting these threats. In this work, S. alexandrina collected from Medina, Saudi Arabia was used and the biosynthesis method was applied to produce the Ag-NPs. The characterization of Ag-NPs was done using different analytical techniques, including UV spectroscopy, FT-IR, TEM, and XRD analysis. The MIC, MBC, and MTT protocols were applied to confirm the bioactivity of the Ag-NPs as antibacterial and anticancer bioagents. The findings reported indicating that the aqueous extract of S. alexandrina leaves, grown naturally in Saudi Arabia, is ideal for the production of bioactive Ag-NPs. The hydroxyl, aliphatic, alkene, N–H bend of primary amines, C–H bonds, and C-O bonds of alcohol were detected in this product. The small, sphere-shaped particles (4–7 nm) were the most prevalent among the bioactive Ag-NPs produced in this work. These nanoparticles inhibited some important multidrug-resistant pathogens (MDRPs) (Escherichia coli, Acinetobacter baumanii/haemolyticus, Staphylococcus epidermidis, and Methicillin-resistant Staphylococcus aureus (MRSA)), as well as their ability to inhibit breast cancer cells (MCF-7 cells). The MIC of Ag-NPs ranged from 0.03 to 0.6 mg/mL, while their MBC ranged from 0.06 to 2.5 mg/mL. Anticancer activity test showed that IC50 of the Ag-NPs against tested breast cancer cells was 61.9 ± 3.8 ”g/mL. According to the current results, biosynthesis using S. alexandrina leaves grown naturally in Saudi Arabia was an ideal technique for producing bioactive Ag-NPs that could be used to combat a variety of MDRPs and cancer diseases

    Preparation and Optimization of PEGylated Nano Graphene Oxide-Based Delivery System for Drugs with Different Molecular Structures Using Design of Experiment (DoE)

    No full text
    Graphene oxide (GO), due to its 2D planar structure and favorable physical and chemical properties, has been used in different fields including drug delivery. This study aimed to investigate the impact of different process parameters on the average size of drug-loaded PEGylated nano graphene oxide (NGO-PEG) particles using design of experiment (DoE) and the loading of drugs with different molecular structures on an NGO-PEG-based delivery system. GO was prepared from graphite, processed using a sonication method, and functionalized using PEG 6000. Acetaminophen (AMP), diclofenac (DIC), and methotrexate (MTX) were loaded onto NGO-PEG particles. Drug-loaded NGO-PEG was then characterized using dynamic light scattering (DLS), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), XRD. The DLS data showed that the drug-loaded NGO-PEG suspensions were in the size range of 200 nm–1.3 ”m. The sonication time and the stirring rate were found to be the major process parameters which affected the average size of the drug-loaded NGO-PEG. FTIR, DSC, XRD, and SEM demonstrated that the functionalization or coating of the NGO occurred through physical interaction using PEG 6000. Methotrexate (MTX), with the highest number of aromatic rings, showed the highest loading efficiency of 95.6% compared to drugs with fewer aromatic rings (diclofenac (DIC) 70.5% and acetaminophen (AMP) 65.5%). This study suggests that GO-based nano delivery systems can be used to deliver drugs with multiple aromatic rings with a low water solubility and targeted delivery (e.g., cancer)

    Area-Efficient Realization of Binary Elliptic Curve Point Multiplication Processor for Cryptographic Applications

    No full text
    This paper proposes a novel hardware design for a compact crypto processor devoted to elliptic-curve point multiplication over GF(2233). We focus on minimizing hardware usage, which we obtain using an iterative bit–serial finite field modular multiplier for polynomial coefficient multiplication. The same multiplier is also used for modular squares and inversion computations, further optimizing the hardware footprint. Our design offers flexibility by permitting users to load different curve parameters and secret keys while keeping a low-area hardware design. To efficiently generate the control signals, we utilize a finite-state-machine-based controller. We have implemented the proposed crypto processor on Virtex-6 and Virtex-7 FPGA devices, and we have evaluated its performance at clock frequencies of 100, 50, and 10 MHz. Specifically, for one point multiplication computation on Virtex-7 FPGA, our crypto processor uses 391 slices, attains a maximum frequency of 161 MHz, has a latency of 4.45 ms, and consumes 77 mW of power. These results, along with a comparison to state-of-the-art designs, clearly demonstrate the practicality of our crypto processor for applications requiring efficient and compact cryptographic computations
    corecore